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ABSTRACT 
In mathematical modelling of water quality, uncertainties are due to limited information on 
the values of physical parameters. In order to quantify such uncertainties in unsteady 
advective dispersion phenomena, dispersion coefficients are represented as fuzzy numbers. 
By combining representation of fuzzy numbers as a discrete set of h-level cuts with reliable 
finite difference numerical algorithms and applying the extension principle in interval 
arithmetics, it is shown that reliable fuzzy numerical simulations are obtained. This is 
concluded by comparing numerical simulations with analytical solutions of one-dimensional 
unsteady advective dispersion equation. 
 

INTRODUCTION 
Deterioration of surface and groundwater water quality from natural and anthropogenic causes 
is of growing concern in many parts of the world. Increased water pollution, caused by urban, 
industrial and agricultural activities, is directly related to the constant growth in the number of 
people living in river basins and coastal areas. Huge amounts of nitrogen and phosphorus are 
released from sewage and leaching of fertilizers resulting in algal blooming, eutrophication, 
shellfish die-off and loss of habitat, together with severe economic, social and ecological 
losses. The situation becomes critical in lakes and semi-enclosed seas such as the 
Mediterranean, where water exchange with the outer ocean is quite small. 

Natural pollutant sources, such as rivers and ditches, may also induce critical pollution 
situations in river deltas and estuaries. How non-controlled fluctuations of pollutant loads and 
imprecise knowledge on the values of physical parameters affect water quality simulations is 
an important question to be investigated. 
Uncertainties in water pollution are of two main types: 

• Aleatory Uncertainties: These are due to natural variability or randomness 
• Epistemic Uncertainties: Different man-induced uncertainties such as those in (a) input 

data, (b) modelling and (c) technological applications. 
Deterministic modelling introduces sharp values of physical parameters and boundary 
conditions. This approach is not adequate to incorporate imprecision on data and propagate 
uncertainties. 

Two main methodologies are appropriate to quantify uncertainties: (1) stochastic 
simulation and (2) fuzzy modelling. 

According to stochastic simulation, physical parameters and input loads are 
considered as random variables. This is a frequency-based approach to propagate 
uncertainties. Results of probability theory (stochastic arithmetic) may be introduced in 
stochastic modelling in the form of analytical functional relationships between random 
variables, or by simulating a large number of different realizations (Monte Carlo method). 
In this paper, the fuzzy set theory in combination with mathematical modelling is proposed in 
order to assess uncertainties in estimating environmental water pollution. First, uncertainties 
in input loads and values of physical parameters are introduced as fuzzy numbers, and then, 



 

uncertainties are propagated by using fuzzy calculus. With fuzzy mathematical modelling it is 
possible to assimilate imprecise data and, in the form of fuzzy numbers, directly produce 
imprecise output without repeating a large number of computations.   

Examples of application in simplified and complicated real cases illustrate the 
capabilities of the above methodology and the precautions to be taken for its successful 
implementation in water pollution problems.  

FUZZY MATHEMATICAL MODELLING 
Fuzzy modelling has not yet been developed extensively, although fuzzy numbers and fuzzy 
relations have found many applications in control engineering and industrial devices. Fuzzy 
set theory (Zadeh, 1965; Klir and Folger, 1988; Zimmerman, 1991), and its derivative fuzzy 
arithmetic (Kaufmann and Gupta, 1985), may be used to directly introduce imprecise data 
into a mathematical model with minimal input data requirements (Ferson et al., 1994).  

In fuzzy modelling, only the range and the most confident values of the input variables 
are required. This means it can be successfully used when the available data is too sparse for a 
probabilistic method to be applied (Ganoulis, 1994; Silvert, 1997). 

CRISP WATER QUALITY MODELLING 
Simulation of environmental water quality is based on the well known advection-dispersion 
mathematical model. The rate of change of the concentration of n different pollutants under 
biochemical interactions can be expressed in two dimensions as: 
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where: 
ck is the concentration for the kth pollutant; 
u and v are the water velocities in the x and y directions (m/s); 
Dx and Dy are the dispersion coefficients in the x and y directions (m2/s); 
Sk is the source term describing the biochemical reactions. 
 

MODEL FUZZIFICATION 
 
Let us now assume that only limited information is available on the input pollutant loads 
(boundary conditions) and the value of the dispersion coefficients. This type of uncertainty 
can be taken into account by considering both input loads and dispersion coefficients as fuzzy 
numbers. This implies that unknown pollutant concentrations at any point x, and at any time t, 
will also behave as fuzzy numbers. They will still follow the advective dispersion partial 
differential equations, which are written as: 
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where the symbol ~  is used to denote a fuzzy variable. 
Although derivatives of fuzzy variables exist, there is no unique solution to equation 

(4), because fuzzy numbers take different values at different levels of confidence  (Appendix). 
If, for every confidence level h, we are looking only for the lower and upper limiting values 
of the unknown fuzzy variables, then the non-uniqueness problem may be resolved as 



 

follows. Every fuzzy number X~  may be represented by a discrete set of h-level cuts )h(X  
(Kaufmann and Gupta, 1988, Appendix). These are ordinary intervals that for the fuzzy 
variables C and D should also follow the advective dispersion equations written as: 
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 k=1,2,. . . n  (5) 

where the symbol 
-
 is used to denote an ordinary interval. 

Applying finite differences or finite elements to equation (5), a system of interval 
equations needs to be solved. This is difficult from a mathematical point of view, and has 
stimulated a lot of interest, because whatever possible technique is used, only enclosures for 
the range of the output function can be produced (Hansen, 1969; Moore, 1979; Neumaier, 
1990). Finding the best possible enclosure for an unknown interval function, which is defined 
as the “hull” of the solution (Fig. 1), is a fundamental problem of interval analysis. It should 
be treated with care, as the solution accuracy depends on the shape of the interval function 
(Rall, 1986). 

Shafike (1994) has used the finite element method to simulate a groundwater flow 
model with fuzzy coefficients. The algebraic system of interval equations was solved with an 
iterative algorithm (Moore, 1979). Dou et al. (1995) applied the fuzzy set theory into a steady-
state groundwater flow model with fuzzy parameters combined with the finite difference 
method. A non-linear optimization algorithm was used in order to apply the extension 
principle for the solution of groundwater flow equations with fuzzy numbers as coefficients 
for the hydraulic heads. Because of the non-uniqueness of the max and min values, this may 
lead to great inaccuracies. 

Ganoulis et al. (1995; 1996) used fuzzy arithmetic to simulate imprecise relations in 
ecological risk assessment and management. For the solution of the algebraic system of 
equations with fuzzy coefficients, direct interval operations were employed, instead of the 
iterative methods or non-linear optimization techniques used in previous studies.  
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Figure 1: The “hull” of one-dimensional convective concentration with fuzzy dispersion 

coefficient and numerical enclosure at given confidence level. 



 

FUZZY NUMERICAL SIMULATION 
Finite differences and finite elements have been used to produce numerical enclosures of the 
solution of equation (5) (Ganoulis, 1994; Mpimpas, 1998). Enclosures may fit the exact range 
of the unknown function better, depending on two main factors: 

1. The accuracy of the numerical algorithm, and 
2. The correct application of the algebra of fuzzy arithmetic (Appendix) 

The Eulerian-Lagrangian scheme based on the characteristics method has also been used. In 
this method the numerical integration of the parabolic part of equation (5) is conducted on the 
characteristics lines of the equation.  
Equation (5) is split in two parts:  

1. The hyperbolic part, which in one dimension is written as udtdx = , and  
2. The parabolic part that takes the following form 

 
)dx))h(Cd)(h(Ddt)h(Cd 22=       (6) 

Using finite differences, a large number of particles are moved over a stationary grid 
to track the advection equation. At each moment in time n∆t the position of each particle is xp 
and its concentration is Cp. At the next moment in time (n+1)∆t the new position of the 
particle becomes tuxx n

p
1n

p ∆+=+ , and the change of concentration at the nodal points, due 
to the dispersion part (6), is computed by an explicit finite difference algorithm as follows: 
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The new particle concentrations are evaluated by adding the change due to the 
diffusive part (7). Then, the new nodal concentrations are calculated by accounting the 
corresponding number of particle concentrations. 

EXAMPLES OF APPLICATION 
First the effectiveness of the above Lagrangian-Eulerian algorithm in terms of numerical 
accuracy and precision was checked. When the dispersion coefficient takes deterministic 
values, and a point pollutant load is considered at the origin of coordinates with initial and 
boundary conditions written as: 
 
 C=0  t=0, x>0 
 C0=1  t>0, x=0,  

the analytical solution takes the form 
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As shown in Fig.2, numerical results are very close to the analytical solution. The 
same numerical algorithm has given satisfactory results in simple two-dimensional cases, 
where the analytical solution is also known (Mpimpas, 1998). 

At confidence level h=0 and D(h=0)=[0.1, 0.5], comparison between numerical 
enclosure and the output concentration range is shown in Fig.3. For this computation, 
particular care should be taken with the application of expression (7). This is due to the fact 
that in this expression, the second derivative of the output concentration takes both positive 
and negative values. Interval multiplication should be done according to the max and min 
rules and also respect the subdistributivity enclosure (Appendix). Near the inflexion point, 
where the second derivative is zero, numerical imprecision reaches a maximum (Fig. 3). 
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Figure 2: Comparison between numerical simulation and analytical solution of the one 

dimensional convective dispersion equation (D=1, Δx=1m, Δt=1s, u=1m/s, Pe=u 
Δx/D=1, t=16s) . 
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Figure 3: Comparison between theoretical concentration range and numerical fuzzy 

enclosure (Δx=1m, Δt=1s, u=1m/s, t=16s). 
 
 



 

In order to further validate the accuracy of the proposed methodology, another 
unsteady, one-dimensional case was studied, for which the analytical solution is known 
(Mpimpas, 1998). This is the case of the one-dimensional convective dispersion equation (5) 
with a supplementary term at the right side representing a linear concentration decay of the 
form -~k c, where ~k  is a fuzzy decay coefficient. The analytical solution has the following 
form 
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Taking ~k  as a triangular fuzzy number (1⋅10-5, 3⋅10-5, 5⋅10-5), and using interval 

representations of fuzzy numbers for h=0, 0.25, 0.5, 0.75, comparison between numerical 

simulation and analytical solution shown in Figures 4 and 5 indicate a very good accuracy of 

the proposed methodology in unsteady water pollution fuzzy simulation. 
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Figure 4:  Variation of interval concentrations c (h) for h=0, t=16h: comparison between numerical 
and analytical solutions. 
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Figure 5: Fuzzy concentrations ~c : (a) at x=40 km and (b) at x=57 km, t=16h.  

 
In real geophysical flows, as in coastal circulation in the Bay of Thermaikos, a finite element 
grid can better describe irregular boundaries. The characteristic Galerkin numerical algorithm 
was applied for fuzzy simulation of coastal water quality. Velocities of currents were 
computed using a two-dimensional coastal circulation model (Mpimpas, 1998). Numerical 
simulation of output concentration of different pollutants at different locations within the bay 
in the form of fuzzy numbers (Mpimpas et al., 2001) incorporates imprecision, due to limited 
information on land-based pollutant sources and the value of the dispersion coefficients. 
 



 

CONCLUSIONS 
Fuzzy modelling is a methodology that can produce the output uncertainties in form of fuzzy 
numbers. Accuracy and precision of fuzzy logic-based numerical simulations depend on the 
quality of the numerical algorithm as well as on the proper application of rules of fuzzy 
calculus as related to the extension principle.  

For the general unsteady convective dispersion model, a methodology is presented in 
this paper for an effective fuzzy logic–based simulation of water quality. The methodology is 
based on representing fuzzy numbers as discrete sets of h-level cuts, the use of reliable 
Lagrangien-Eulerian finite difference numerical algorithms and application of the extension 
principle in interval arithmetics. 

Such a methodology is very useful when boundary pollutant loads and model 
parameters are inadequately known and a sensitivity analysis is necessary.. For example, in 
order to simulate the output range of the solution due to the variation range of s parameters, 
one needs to repeat at least 2s computations. With the reliable methodology proposed here, 
one simulation is sufficient for quantifying the range of uncertainty in the output. 
 
 

APPENDIX : FUZZY NUMBERS AND FUZZY ARITHMETIC 
 
A fuzzy number %X may be formally defined as a set of ordered pairs 

 %X = {( x, µ %X(x)) : x ∈R; µ %X(x) ∈ [ 0, 1 ]}     (A.1) 

where x is a particular value of %X and µ %X(x) represents its membership function. Values of 
the membership function are located in the closed interval [0,1]. The closer µ %X(x) is to 1, the 

more “certain” one is about the value of x. A fuzzy number %X is normal and convex when its 
membership function takes one maximum value equal to 1 and always increases to the left of 
the peak, and decreases to the right. 
The simplest type of fuzzy number is the triangular, that is one having linear membership 
functions on either side of the peak. A fuzzy triangular number can be characterized by three 
real numbers: two values of x i.e.x1, x2 where the membership function reaches zero, and one 
value x3where it reaches a value of 1.  
A triangular fuzzy number (TFN) may be described by the values of x at points x1, x2 and, 
i.e. %X = (x1, x2, x3) 
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Figure A.1: A triangular fuzzy number %X=(x1, x2, x3). 



 

 
 
The h-level set of a fuzzy number %X (Fig. A.1) is the ordinary set or interval X (h), defined as 
 
  X (h)={x: µ %X(x) ≥h)}      (A.2) 
 
Let us consider two triangular fuzzy numbers 

~
A  and 

~
B given by the triplets 

~
A =(a1, a2, a3) 

and 
~
B=(b1, b2, b3). We have 
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ii) Subtraction: 
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The multiplication or division of two fuzzy numbers does not always produce a fuzzy 
number. These operations can be defined as follows:  
 
iii) Multiplication  
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Algebraic Properties of Fuzzy Numbers 
Let us assume that 

~
A , 

~
B and 

~
C  are fuzzy numbers.  The following laws hold: 
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However, subdistributivity and subcancellation are not always valid.  In particular we have  
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Overestimation usually occurs because of the failure of the distributive and cancellation laws.  
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