

International Symposium on Transboundary Waters Management, Thessaloniki,15-18 October 2008

Water resources availability under changing climate: a case study on Tranceboundary Rivers Struma/Strimon and Mesta/Nestos

Snejana Dakova

National Institute of Hydrology & Meteorology, BASc, 66 Tzarigradsko Shosse,1784 Sofia, Bulgaria

E mail Snejana.Dakova@meteo.bg

OBJECTIVES:

- To present the water resources availability in current conditions and under climate change impact towards 2025 and 2050 years.
- The streamflow of two tranceboundary rivers with Greece Struma/Strymon and Mesta/Nestos have been developed as a case study

crossing - border rivers		basin area F (sq.km)	riever length (km)		m)
rivers	running in countries	F total	F in Bg	total	in Bg
Struma/Strimon	Bg,Gr,Serb&Macedonija	1733	10797	420	292
Mesta/Nestos	Brlgaria & Greece	5925	3400	273	126
Maritza/Evros	Bg, Greece, Turkey	53000	21084	524.6	326
Arda	Bg, Greece, Turkey	5795	5201	290	241
Tundja	Bulgaria, Turkey	7880	7784	380	350

 Struma/Strimon and especially Mesta/Nestos is placed for the study due to the fact that downstream demands for water are high and water resources generation upstream is heavily influenced by human intervention

Streamflow regime of Struma/Strimon & Mesta/Nestos rivers

Variability of annual flow

Current water recourses

period	Mesta/Nestos	%	Struma/Strimon	%
1936-1975	1222x10 m	100	2669X10 m	100
1936-1985	1202x10 m	-1.64	2600 x10 m	-2.59
1026 1005	1120 10	7.50	2477 10	7.10
1936-1995	1130 x10 m	-7.53	2477 x10 m	-7.19
1982-2000	619 x10 m	- 49.35	1604 x10 m	-39.9

The changes of climate and hydrological elements were presented as deviation toward the respective values evaluated for the basic period 1961-1990 according IPCC

Climate changes are stipulated by A2 and B2 storylines because the both are focused on local and regional peculiarities.

Two climate models HadCM2 and ECHAM4 have been selected and used from the MAGICC)/ SCENGEN package (Models for the Assessment of Greenhouse-gas Induced Climate Change/ SCENario GENerator.) because they are produced in Europe and are the most suitable for the European conditions.

Changes of precipitation and temperature

Temperature			Precipitation			
models	∆T 2025	∆ T 2050	∆ T Q2100	∆ P 2025	∆ P 2050	∆ P 2100
HadCM2	0.9-1.1	1.6-1.8	3.3-3-5	3-5%	6-9%	12-18%
ECHAM4	1.1-2.3	2.1-2.2	4.2-4.4	2-3%	4-5%	8-10%

Comparison of the changes in% of runoff values obtained by two models with output data from the ECHM4 and HadCM2.

The Mesta river	Δ2025	Δ2050	Δ2100
ECHM4-WB	-7,66	-11,08	-17,93
ECHM4 -HBV	-13,43	-22,8	- 41.81
HadCM2-WB	-17,8	-20,6	- 28,2
HadCM2 -HBV	-12,8	-21,44	- 39,74

The Struma river	Δ2025	Δ2050	Δ2100
ECHM4-WB	-18,67	-23,24	- 42,1
ECHM4 -HBV	-13.43	-10.84	-24.18
HadCM2-WB	-18,59	-28,05	- 38,3
HadCM2 -HBV	-11,43	-10,14	-21,97

Conclusions and recommendations

 The obtained results have to be considered what might happen if we do not adapt to changing climatic conditions. Its social significance is to guide policy-makers, agriculture, electricity producers in order to initiate a practical response for adaptation to these new conditions. It may be includes reassessment of the reservoirs and hydraulic systems, change of their working regimes, reconstruction some of them or building new ones, new dry steady agricultural vegetations, different kind of tourism services etc

Conclusions and recommendations

 The water users in a river basin are linked through the water flow, yet this link sometimes lead to sub-optimal river management, as certain activities upstream with positive impact downstream may be not economically feasible if considered in isolation. A solution is to quantify and institutionalize upstream-downstream interdependencies, whereby for example, those situated downstream compensate upstream farmers for their sustainable land use and soil and water conservation practice

Conclusions and recommendations

- Water scarcity situations encountered at river basin level have already had noticeable impacts on water supply, economy, society and environment and could be extended in the next time level 2025, 2050 years.
- Water scarcity and droughts are a transboundary issue requiring a hydrological solidarity and coordinated approaches among the countries sharing the basin

Mesta/Nestos in it upper part

Thank you for your attention

The reported here results are a part of the project " Assessment of Climate Change impact on the Hydrological cycle elements in South-East Europe" funded by UNESCO-BRESTE (UVO-ROSTE) Venice office

E mail Snejana.Dakova@meteo.bg