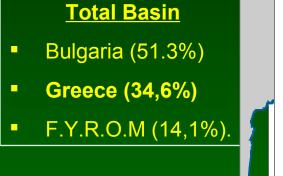
Identification, typology and type specific reference conditions of river water bodies in the Hellenic part of the Strymonas river basin, as a transboundary case study

<u>Chronis Ioannis¹</u>, Lazaridou Maria², Zalidis George¹, Tsotsolis Nikolaos³

- 1. Laboratory of Zoology, Department of Biology, Aristotle University of Thessaloniki,
- 2. Laboratory of Applied Soil Science, School of Agriculture, Aristotle University of Thessaloniki
- 3. General director of Region of Central Macedonia


IV International Symposium on Transboundary Waters Management

Aims of the study

- To identify the river water bodies in the basin
- To select and apply the methodology of typology on the water bodies
- To examine if there are any type specific reference conditions in the basin
 - Critical steps for an accurate investigative monitoring according to WFD guidelines.
 - The study was held during the project of "Surveillance monitoring in the Hellenic part of Strymonas river basin" funded by the Region of Central Macedonia

IV International Symposium on Transboundary Waters Management

Study Area – Hellenic part of Strymonas River Basin

Greek part of Stymonas River:

- Area of 6.000 km²
- River Length 118 km
- Includes 4 Natura2000 sites

0 4.5 9 18 27 ΥΠΟΜΝΗΜΑ Λεκάνη Απορροής Στρυμόνα

IV International Symposium on Transboundary Waters Management

River bodies identification

- River water bodies in the basin were identified and recognized <u>as coherent units</u> (according to GD No.2)
- Morphological elements and river confluences were examined thoroughly so as to achieve the best division grade among the river water bodies.
- Apart from main river, three side rivers with constant flow were selected for recognition

IV International Symposium on Transboundary Waters Management

Typology System

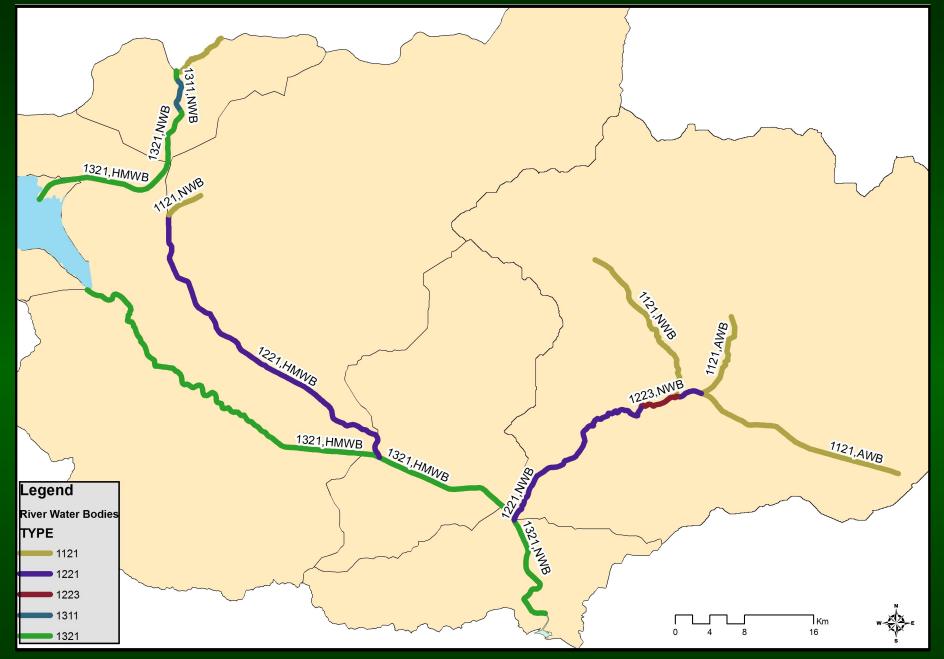
- Typology <u>System B</u> was selected to treat the mosaic differences of the Hellenic nature
- Three obligatory factors (altitude,cathment size, geology) and one optional (slope)
- All factors were categorized in three classes either after a statistical analysis

IV International Symposium on Transboundary Waters Management

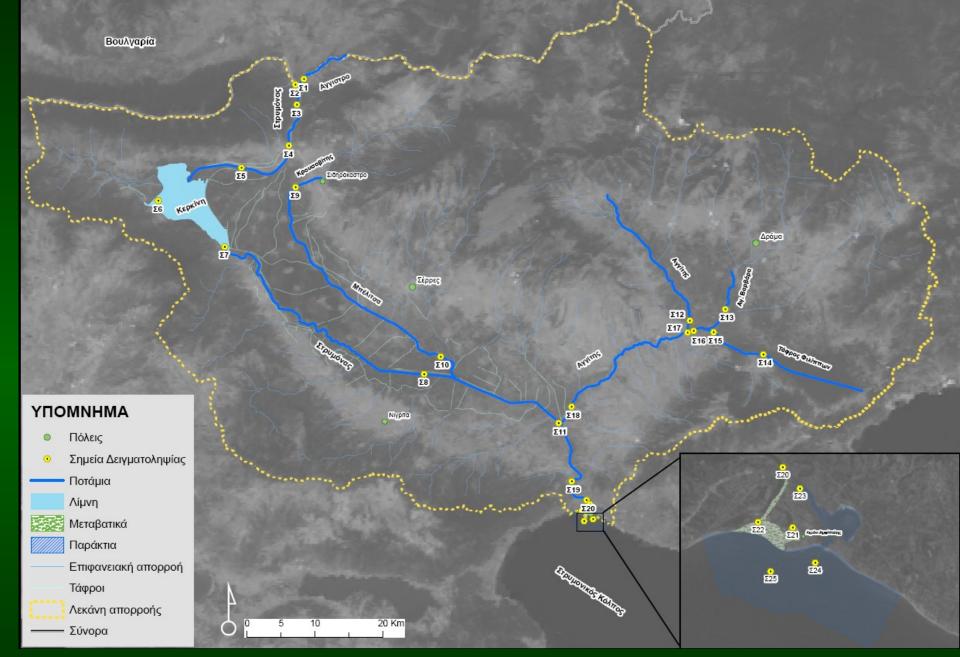
Typology System

- A four digit numerical system was adapted to present the types
 - 1st digit = altitude category
 - (1=0-150m or 2=150-600m or 3=>600m) (Dikau, 1989)
 - 2nd digit = catchment area category
 - (1=0-500m² or 2=500-5000m² or 3= >5000m² (including transboundary river basin) (Statistical analysis of catchments in Northern Greece)
 - 3rd digit = geology category
 - (1=Ca or 2=Si or 3=C) (Data from Geology Dep. AUTH)
 - 4^{th} digit = slope
 - (1=0-5° or 2=5°-15° or 3= >15°) (Demek, 1972)

Example: 1211 = Altitude 0-150m, Catchment 500-5000m², Geology Ca, Slope 0-5°


IV International Symposium on Transboundary Waters Management

Results


- 17 river water bodies were identified
 - 3 Artificial WBs (human construction)
 - 5 Heavily modified WBs (severe channel transformations)
 - -9 Natural WBs (mostly upstream parts)
- 5 river types
- No type specific reference conditions

IV International Symposium on Transboundary Waters Management

ТҮРЕ	NAME	WATER BODIES	LENGTH (m)	
1121	Aggistro	R-NWB	7033	
	Aggitis Upstream	R-NWB	20394	
	Krousovitis	R-NWB	4383	
	Tafros Ag. Varbaras	R-AWB	10850	
	Tafros Fillipon 1	R-AWB	19986	
	Tafros Fillipon 2	R-AWB	5268	
1221	Aggitis 2	R-NWB	23500	
	Mpelitsa	R-HMWB	41500	
	Tafros Fillipon 3	R-HMWB	3000	
1223	Aggitis 1	R-NWB	4905	
1311	Strymonas Upstream 2	R-NWB	3979	
1321	Strymonas Upstream 1	R-NWB	1241	
	Strymonas Upstream 3	R-NWB	6465	
	Strymonas Upstream 4	R-HMWB	17590	
	Strymonas Downstream 1	R-HMWB	45902	
	Strymonas Downstream 2	R-HMWB	17889	
	Strymonas Downstream 3	R-NWB	14613	
IV International Symposi on Transboundary Wate Management	rs	Chronis Ioannis, PhD candidate MSc. Enviromental Biology, Agroecologist		

IV International Symposium on Transboundary Waters Management

IV International Symposium on Transboundary Waters Management

Conclusions

- The application of System B proposed 17 monitoring sites for surveillance monitoring for the 17 identified RWBs (One station per WB)
- The selected system B responded to the particularities of the transboundary basin
- Types help us to find out the typocharacteristic conditions which will be compared to the observed in order to define the EQ of each WBs

IV International Symposium on Transboundary Waters Management

Thank you.... ichronis@agro.auth.gr

IV International Symposium on Transboundary Waters Management