Water Resources Management in the Rio Grande/ Bravo River Basin using Cooperative Game Theory

> Rebecca L. Teasley, PhD Candidate Daene C. McKinney, PhD

Center for Research in Water Resources Civil, Architectural and Environmental Engineering The University of Texas at Austin

Cooperative Game Theory

- Games involve coalitions
- Coalitions act cooperatively to maximize benefits
- Coalition value allocated to coalition players
- Can reveal increased benefits from cooperation

Rio Grande/Bravo Basin

Methodology

- Determine Coalitions
- Calculate Coalition Values with WEAP
- Determine the Core
- Select an Cooperative Solution

Rio Grande/Bravo WEAP Model

- Agricultural Sector
- Mexico
 - 22 Irrigation Districts
 - 33 Uderales
 - 3375 MCM/yr
- US
 - 56 Irrigation Districts
 - 3869 MCM/yr
- Municipal Sector
- Mexico
 - 13 cities
 - 608 MCM/yr
- US
 - 23 cities
 - 349 MCM/yr
- Reservoirs
- International
 - 2 (7.18 BCM)
- Mexico
 - 15 (11.4 BCM)
- US
 - 6 (3.43 BCM)

Groundwater Banking Scenario

Reduction of evaporative losses > 140 mm/yr

Players in the Game

Coalitions

- Non Cooperative
- Partial Cooperation
- Full Cooperation
- Coalition Values Calculated with WEAP model

Modeled Aquifer Storage

First 5 years of the drought of record

Characteristic Functions

Coalition Type	Players in Coalitions	Characteristic Value (million m ³)
Non-cooperative	1	0
Non-cooperative	2	0
Non-cooperative	3	0
Partial Cooperation	1,2	22
Partial Cooperation	1,3	53
Partial Cooperation	2,3	0
Full Cooperation	1,2,3	63

Characteristic Values are Calculated with the WEAP model

Shapley Allocation

Benefits of Cooperation

 Each player receives an increased allocation of water through cooperation

	Status Quo Allocation (million m ³)	Cooperative Allocation (million m ³)
Player 1	0	34
Player 2	0	7
Player 3	0	23

Thank you

Stakeholder Suggested Areas for Improvement

Objectives

- Increase Whole System Benefits
- Improve Agricultural Supply Reliability
- Increase Municipal Water Supply
- Restore Environmental Flows

Methods

- Water Right Buybacks & Transfers
- Groundwater Banking & Conjunctive Management
- Non-treaty Tributary Flows
- Water Conservation & Reuse
- Facility Reconfiguration & Reoperation
- Brackish Water Desalination

The Core

Irrigation District 005 (Player 1)

Benefits are volumes of water in million m³

